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The following article demonstrates how the logical coherence of relativistic electrodynamics is
maintained for a particular family of rotational paradoxes. The internal computational unity, for
rotation, is preserved through the manifestation of a commonly unrecognized geometrical

property of tensor calculus.

INTRODUCTION

An interesting family of paradoxes frequently discussed
in electromagnetics classes concerns the fields produced by
rotating charge distributions.! That a rotating spherical shell
of charge, for example, produces a magnetic field in the
frame of a laboratory observer is readily accepted by many
students. “However”, a student will query, “with respect to
an observer whose system of reference is co-rotating with the
sphere, the charges are at rest and hence, in this system, no
magnetic fields ought to exist.”

A similar paradox occurs with rotating cylindrical dis-
tributions of charge.” Once again, a laboratory observer per-
ceives an axial magnetic field whose source is the rotating
cylinder of charge. For a co-rotating observer, the charges
are at rest and therefore should produce no magnetic fields.
Even worse, for the rotating observer inside the cylinder, by
Gauss’s Law, there should exist no electric fields. How then
can we have a nonzero field tensor inside, in the inertial sys-
tem (laboratory frame), and a vanishing field tensor in the
rotating system, since if a tensor vanishes in any frame it
must vanish in all other systems of reference at that point?

In both of these paradoxical examples the reader is cau-
tioned not to accept the conclusions unquestioningly. The
logic may be impeccable—but the presuppositions are erro-
neous. Why do we resurrect these historical paradoxes? Be-
cause we believe that they illustrate the computational beau-
ty and conceptual richness of relativity theory as manifested
through the inherent presence of the object of anholonomity.

We parenthetically comment that our physics is tran-
spiring on an underlying manifold that has zero curvature
(in the limit—i.e., we assume that we can paste charges onto
a flat manifold and not disturb the geometrical structure of
the manifold). Even though we are doing non-inertial phys-
ics, we are properly within the realm of what is traditionally
called special relativity. (Our approach works equally well
on curved spacetimes, of course.)

1. THE ROTATING SHELL OF CHARGE

The presentation of the magnetic field arising from a
rotating charged spherical shell appears in many textbooks
on electromagnetism. The computation is performed in the
frame of an inertial observer and, with the aid of calcula-
tional conveniences, smoothly proceeds from a specification
of the current density
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Ji(r) = % sin@'8(r' —a) )
to the computation of the vector potential
Qor sin@ (r<a)
sind  (r>a)
3c”

The magnetic induction follows from the curl of the vector
potential as

- 23& sin@ (r<a) (3a)
ca a
Be (r,g ) = Qwaz Gind (r s a) . (3b)
3cr
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FIG. 1. Magnetic flux density arising from a rotating spherical shell which
is uniformly charged as perceived by a nonrotating observer. (Compare
figure 5-11a of Ref. 7)
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and
200 cos@ (r<a)
B.(r6) = 3ca (o)
r\’y - 2 ‘
2wQa cosf (r>a) Gd)
3cr

These familar fields are shown for reference in Fig. 1. The
prescription followed has been to specify the current distri-
bution and follow the path J#“—A “—F**, The inertial elec-
tromagnetic field tensor is taken as
F, = 94, _ 94, '

Ix* ax”
One wonders if a similar path could be followed in the rest
frame of the rotating charges: Say, J*—A4 °—F°°, where the
rotating quantities and inertial quantities, by their tensorial
nature, would be related by some Lorentz-like transforma-
tion. In this article, we propose to pedagogically demon-
strate that this covariant nature of Maxwellian electrody-
namics, under relativistic rotation, is only attainable with
the inclusion of the object of anholonomity. (This remark-
able nontensorial object does not modify the theory of rela-
tivity in anyway, but rather is a commonly unrecognized?
inherent pre-supposition of tensor calculus on manifolds®.)

2. ROTATION IN SPHERICAL COORDINATES

Pirani® and later Irvine® have discussed how a rotating
observer may let his world line provide a time-like direction
and employ the Frenet—Serret Formulas to obtain a field of
orthogonal reference frames, e, .* The result for spherical
coordinates, is the field of frames (x* = r = ¢t)

e,=e, (4a)

€ =€ (4b)
i

e; =ye, + rﬁ’%'ﬂ e, (4c)

e4=7%e¢ +7e,. (4d)

These are orthogonal, and are related to the natural
basis vectors of the inertial observer’s field of reference
frames, at every observable spacetime event, by the Lorentz—
like transformation

e, =hfe,, (5)
where
1 0 0 0\
0 1 0 0
At =10 O Y y% 6)
a2
0 0 Pwsin’@ v
c
and
2ot _
Y= (1 _ r’wcszm 0) 5. e

Furthermore, for all observers in the rotating frame, the
metric tensor g,, = e, e,, will then have the orthogonal
form
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1 0 0 0
0 2 0 0
- 8
8+=V0 0 rsin0 o0 @)
00 0 ~1

Notice that this is consistent withg,, = h4h ;g,,, whereg,,,
is the metric of the inertial (or non-rotating) frame.

In the inertial frame, one employs the usual spherical
coordinate Christoffel Symbols

[:,] = 18’ [8up + 8pva — Gras ] - ©)

These familiar non-tensorial objects are symmetric in their
lower indices, and their spherical coordinate values appear
in many textbooks. Given the components with respect to
one frame, one transforms them with respect to any other
frame according to

o _papapvf Bl pupv 9S
Fbc_hyhbhc{va} bhc ax# . (10)

Employing Eq. 6, one finds that even though the inertial

frame {,u ] is symmetric in the lower indices, the I"%_ are
va

not. This is because the set of frames, Eq/(4)and the transfor-
mation, Eq.(6)are anholonomic. The concept of anholono-
mity has been discussed elsewhere and one should note that
it arises from a choice of the field of reference frames and is
not a tensorial quantity on the underlying manifold as, for
example, torsion would be. (Torsion can’t be transformed
away over an extended region.) How does this asymmetry
affect electrodynamics?

An invariant form of Maxwell’s Equations may be ar-
rived at from a variational principle as

v, Fe— 477.1", a1
where

J# = prt (12)
and

F,=V,A -V, (13)

The four-vector potential has the covariant components giv-
en by:

A, = (A, rd,,rsinbA,; — D). (14)

In inertial frames of reference, Eq. (13) reduces to the simple
expression

oA, 04
F,, = — £, (15)
ax* ax¥
However, in the rotating frames of Eq. (4), Eq. (13) must be
written as the tensor

24, d4
F, = - — +202:,4,, 16
Sl pw 5 (16)
where
2. e4[rg, —rg,l. {1

Ininertial frames, this last component vanishes, but in rotat-
ing frames, Eq. (15) is inappropriate for the description of
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electrodynamics because it leaves out anholonomic effects
(Eq. (15) is not a tensor unless £25, = 0). The objects of
anholonomity may be computed by a variety of techniques,*
and since they are needed here, we present their computation
by the Cartan Calculus in the Appendix.

3. SPECIFICATION OF THE SOURCE DISTRIBUTION

In the inertial frame, let us specify the components of
the four—current density

u _ Jo Iy
=ptt =/, —, ——;c) (18)
r rsinf
so that
J# = (0,0,0pp;c00) - (19)

The charge density is taken as uniform when observed from
the inertial frame, say

Po= Q 5(r' —a).

4ma

In particular, for computational convenience, this means
that we are assuming that in the proper frame of the shell the
density of charge varies continuously with latitude in such a
way that the charge distribution just compensates for the
relativistic increase in density and hence, in the inertial
frame, is perceived as a uniform charge distribution. [This
assumption was really made back in Eq. (1).] In the inertial
frame, the differential equation represented by 11, 12 and 13
may be solved as

— 2 r<a
A= — D= Z (20)
— 2 r>a
r
and
—Q;o—'lsinze r<a
a
Ay = A, rsing = Q:)az @1
-—-3—sin20 rea.
re

One may quickly form the inertial frame field tensor from
Eq. (15) (since 2, = 0). Further, the separate F** for r <a
and r> a satisfy the point-wise boundary conditions across
the shell discontinuity. We have followed the prescription
given in Sec. 1: J#—A4 *—F**. We now shift to the rotating
frame and pursue the suggestion J “—A4 “—F ®. If our analy-
sis is acceptable, we should have a completely covariant for-
mulation of the problem, and have resolved any paradoxes
along the way.

4. COMPUTATIONS IN THE ANHOLONOMIC FRAME

Employing the dual to the transformation of Eq. (6), we
write down the current density in the proper frame of the
charges (the rotating frame)

Je=hyJ" =pv* 22)
or, more explicitly
Jo= (0,0,0;c ’-’2) . (23)
Y
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Again, J * reflects our choice of having p, specified as uni-
form in the inertial frame. This form for the charge density is
acceptable because the rotating observer perceives no mov-
ing charges (and hence no apparent magnetic field-produc-
ing currents.)

Remembering that in the rotating frame dV = ydV,, we
note that charge invariance is satisfied:

%J‘J-JJ“dSa -0. (24)

Since Eq(11)is form-invariant, the vector potential
must satisfy the differential equation

V[ c d( a c+20er)]=___Ja’
|7 ax* ac? ¢ ¢
(25)

where the objects of anholonomity are given in the Appen-
dix. One may find the transformed components of the vector
potential by Eq. (6)

A, =htA,
as
A, =A4,=0, (26a)
2 in2
B Zer;wsm 0 (r<a)
ca
Ay =1 Ly L (26b)
yQua’sin®6  yQrosin®6 (r>a)
L 3cr c
2cin2
[ % ¥ VQr;czzzm 0 (r<a)
A= o (26¢)
e " yQa‘w’sin“0 (r>a).
L r 3rc?

Now, by Eq. (26), (8), and (23) and the tabulated 2 ;_, one
may readily verify that Eq. (26) is indeed the solution of Eq.

[+
Qab?‘o

big
o - A - F* v, FH=

34

} & ‘ !
FENSNGYL P L LS

Q

i . 3A ———
Inertial Frames FW=V“AV_V A v _ Ay + (r:‘_ r:.,)Au

vORT IR T XY

Ap_ 3A
Rotating Frame: FabéVaAb-VbAfg—xg' ﬁ[‘: +205pAc

FIG. 2. This diagram indicates what is demanded of any covariant formula-
tion of electrodynamics. A relativistically covariant formulation is possible
for rotation by virtue of the intrinsic nature of the anholonomic object.
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(25). What would have happened if the rotating observer had
neglected the anholonomic contribution? Figure 2 would
then have to display an internal inconsistency.

Next, one might desire the field tensor in the rotating
frame. The reader is encouraged to transform theinertial 7,
and compare with the results computed by Eq. (16) and the
tabulated {2 ¢, . For completeness, we list the nonzero results
(as obtained by either method).

24in2
2wy <a)
ac
R VL) R
2 3c?
-
27Qr2a3’ el (<0
a
_ _ 27
Fry =rE, 2yQa’w’sindcosd e
! (r>a)
3rc
;2
_ 2_79_2@32 (r<a)
. ac
F,, =rsinfB, = a M(l _ _ai) (r>a)
c 3
27¢)
M%IM (r<a)
= i = d
F,, = sinéB, 2yQa’wsinfcosb @19
—T r>a).

One may verify that Egs. 27 really do satisfy the Maxwell
Equations (if, by now, he is not already convinced of the built
in anholonomity in relativity for non-inertial frames). This
exercise is particularly illuminating since the left-hand side
of Maxwell’s source equations [or Eq. (25)] vanishes for
r#a, and the jump conditions are satisfied across the shell
discontinuity.

5. CYLINDRICAL SHELL OF CHARGE

When discussing the rotating cylinder, Fig. 3, Feyn-
man® makes the provocative comment, “There is no ‘relativ-
ity of rotation’. A rotating system is not an inertial frame,
and the laws of physics are different. We must be sure to use
equations of electromagnetism only with respect to inertial
coordinate systems.” To which we agree wholeheartedly.
But, after making this seductive and tantalizing statement,
he passes on to another topic without hinting how one does
do electromagnetism in noninertial systems. (At a similar
point in their analysis of the sphere, Panofsky and Phillips'
appeal to General Relativity, even though they are working
in a flat spacetime.) Surely one may proceed as J °—>A4 *—F *
since all are tensor quantities.

Let us formulate the problem in the inertial system in
the following manner: we specify the current density in cy-
lindrical coordinates.

JE=pvt =, Jg/1J,;cp) (28)
as

J# = (0,004,0,c0,), 29)
where oy, is the surface charge density, assumed to be uni-
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FIG. 3. Magnetic flux density arising from a rotating charged cylindrical
shell. (Compare Fig. 14-5 of Ref. 2)

form over the thin cylindrical shell as perceived by the iner-
tial observer. We write

Q s /1 ’
%= Tpa 2 TN 270 9 ¢
Equations (11), (12), and (13) are then solved as

21ra(;awr2 (r<a)
A, =rd, = 3 (31a)

2moya e (r>a)

29 (r<a)
Ay= —d= &, + —i—ln(—a—), (r>a) (31b)
27 r

where @, is a suitably chosen constant. The field tensor has
nonzero components:

0 r<a
F14=E, = i_ rsa (32)
27rr
4roaor
——  r«a
F,=rB, = c (33)
0 r>a.

We now turn to the analysis J >4 °—F “® in the rotat-
ing frame. In this system
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J ¢ = pv® = (0,0,0,co0/7). 34)

Here again, we have assumed that in the proper frame of the
cylinder the density of charge varies in such a way that the
charge distribution just compensates for the relativistic in-
crease in density and is consequently perceived by the inertial
observer as uniform. (In this case a naive application of
Gauss’s Law would surely lead a rotating observer to con-
clude that F ?® for r < @ vanishes entirely.) The 2 ¢, for rotat-
ing cylindrical coordinates have been included in the Appen-
dix. One may readily verify that a solution to Eq.(25)for the
distribution of Eq.(34) is

2rycawr’ 4 YDy
c c

2myoaw’r
CZ

A, =

(r<a) (35a)

Ay =yDy + (r<a). (35b)
From Eq. (16) we compute the nonzero components of the

field tensor as

2
Fo=E = 722 (<a) (362)
F,=rB, = 3TY0S@ (4. (36b)

We note that these satisfy the Maxwell Equations. As a
check, we also see that

Je=hoJ* (372)
A°=ho4* (37b)
F,=h"h}F,, . (37¢)

The internal consistancy of Fig. 2 is again demonstrated. We
are now in a position to analyze Feynman’s students’ query,
“ “What if I put myself in the frame of reference of the rotat-
ing cylinder? Then there is just a charged cylinder at rest,
and I know that the electrostatic equations say there will be
no electrostatic fields inside . . . . Something must be
wrong.’ ”

Our response is to reecho our opening comments: the
logic is unquestionable, but the presuppositions (concerning

£2¢,) are unsound.
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APPENDIX

For reasons of completeness, we briefly sketch one of
several techniques for obtaining the spherical coordinate ob-
jects of anholonomity for the rotating observer. (The cylin-
drical coordinate objects are derived in Ref. 4 .) In order to
obtain the £2 ¢, , one may actually perform the laborious cal-
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culation indicated by Eq.(10) of this article. Alternatively, he
might employ the field frames given by Eq.(4) and the duality
relation:

(we,) =& (A1)
to find the natural 1-forms for the rotating observer.
w'=dr (A2a)
o’ =db (A2b)
©® = Y(d$ — wdt) (A2¢)
o= yc(dt — iangnz_O d¢) . (A2d)

Given these forms, one may compute the exterior derivative
(A3)

and read off the non-zero components of the spherical ob-
jects of anholonomity:

de® =202 0" Ae®

03, = — 0} = Lo (Ada)
0 = — 03, =) LS008 (Adb)
01 = — 04, =y L (A40)
04 = —n;4=;l’z’2—“’zs:i2“—9°-‘3§ﬁ (A4d)
04 = —af, =p e (Ade)
04 = — 08, =y2r2wsin6cos(9 (AdD)

4

Similarly, the nonzero cylindrical coordinate components of
the anholonomic objects are:

2
0% =-05 =+ ”22:‘;’ (A5a)
23 =—-0%L=+ ——”:"" (A5b)
2
N3 =-0%=+ r'ro (A5¢)
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